Математическое моделирование (методы оптимизации) учеб. пособие

Recommend Stories

Empty story

Idea Transcript


.

.

)

2016 1

517 22.18 86

: .

.

,

.

,

;

.

.

,

.

.

.

,

.

. (

86 .

.–

) :

:

.-

, 2016. – 70 . -

1. .3 «

»

08.04.01 «

»,

«

». .

,

-

. – .: 24.

.

.: 24.

.: 14

. 517 22.18

© ©

. ., 2016 , 2016 2

................................................................................................... 4 ........................................................................................... 5 1 « » ..................................................................... 7 ................................. 7 ..... 9 ............................................................................ 12 ......................................................... 12 2« » ................................................................... 16 ...................................................................................... 16 ............................................................................ 21 ......................................................... 21 3« » ............... 22 . ............................. 22 .................................................................................. ................................................................ .................................................. ............................................................................ ......................................................... 4« » ................................... ................................................................ ....................................................... ................................................ ...................................................................... ............................................................................ ......................................................... 5« » ........................................... ..................................................................................... ............................................................................ ......................................................... .........................................................................

3

23 27 35 45 45 48 48 50 52 54 56 56 60 60 67 67 70



-

, ,

-

. : ( ,

,

), ,

-

;

,

-

, , , ;

(

-

),

, . ,

-

, .

4

– ,

, ,

. , .

,

-

, . ,

: I



, ,

,

-

,

,

,

-

; II



, , ,

III

, -

,

;

– ,

,

. . ,

, . -

. , , . , , ,

-

, –

. , .



,

,

. 5

,

. , , .

– , . .

-

. –

(

,

.). -

: ,

; , .

, .

-

. (

), , ,

-

. . , . .

, . . – . .

6

1

: 1.

.

2. 3.

. .

. , 100

2

, 160

.- (

: 300 .

) –

– 10 .-

,2

.,

. 4

. 5

,1

2

,3

2

,2 – 12 .-

.

., ,

. . 1. 1 (x1) S1 S2 S3 L

) )

(x2)

4 2 2 10

) )

5 1 3 12

300 100 160

x1 x2

. 10 x1

(

12 x 2 ,

)

,

: L 10 x1 12 x 2

max .

S1 4 x1

5·x2

,

7

S1

-

5 x2 ,

4 x1

, . . 4 x1

300 .

5 x2

,

4 x1 5 x2 2 x1

-

:

300,

x2 100,

2 x1 3 x2 160. x1 , x2

) x1

0, x 2

0.

,

,

-

, . ).

-

x1 , x 2 ,..., x n ,

,

a11 x1 a12 x2 ... a1n xn

b1 ,

a21 x1 a22 x2 ... a21n xn

b2 ,

............................................. am1 x1 am 2 x2 ... amn xn x1

L

c1 x1 c 2 x 2 .

0, x2

0,..., x n

bm , 0,

,

... cn x n ,

.

: 1.

, .

2.

, .

3.

, .

x1 , x 2 , ..., x n , , (

). 8

-

(

).

,

-

,

.

,

.

1.

, . L 0.

2.

-

, . 3.

.



-

, .

,

gradL n , n –



.

L 0

4.

.

, ;

,

, ,

. :

1.

. (

2.

. 1 ).

, ,

,

,

.

,

,

, (

-

. 1 ). .

3.

, (

4.

L 0 ( ). .

. 1 ). , .1 , (

, 9

L 0.

-

)

)

)

) .1

1.

, L 10 x1 12 x 2

4 x1 5 x2 2 x1

max ,

300,

x2 100,

2 x1 3 x2 160. x1

0 , x2

0.

. ,

-

. . :

10

L1 : 4 x1

5x2

L2 : 2 x1

x2

L3 : 2 x1

3x2

0, x2

x1 1

300 , 100 , 160 ,

0. .

2

L 1 , L2 , L3

. ,

( O 0;0 )

-

.

x1

, 0, x2

.

0

x1

,

0, x 2

0

,

, -

L

0

. . 10 x1 12 x 2

0

gradL

L 0

n(

. 2).

.2

,

n

, 11

, . . .

L2

L3.

2 x1

x2

2 x1 3 x2

, 100,

:

x1

160,

35, x2

Lmax 35 10 30 12 710. , 35 30 710 .

1. 2. 3. 4. 5. 6.

30,

,

-

. . . . . ?

7. 8. 9.

. .

. -

?

,

: c1

2

,

2

.- (

3

)

. –



.,

. , .,

1

.-

3

. b1

– , b2

2

, b3

.

2 2

.,

. 1.

a1

20, a2 15, a3 14; b1

c1

758, c2

526, c3

12

-

541;

28, b2 10,

9, b3 1; 2.

, -

2.

a1 15, a2 c1

15, a3

571, c2

9; b1

577, c3

33, b2

25, b3

8,

10.

445;

3;

3.

a1 11, a2 c1

13, a3 13; b1

741, c2

741, c3

21, b2 15, b3

822;

5,

3.

8, b2

4, b3

3;

4.

a1 14, a2 c1

12, a3

624, c2

8; b1

541, c3

376;

7,

2;

3.

5.

a1 19, a2 16, a3 19; b1 c1

868, c2

638, c3

26, b2 17, b3

853;

5,

8;

4.

6.

a1 14, a2 15, a3 c1 1200, c2

20; b1

40, b2

993, c3 1097;

27, b3

5,

4;

13.

7.

a1

9, a2 15, a3 15; b1

c1

606, c2

802, c3

27, b2 15, b3

840;

11,

3;

6.

8.

a1 13, a2 c1

608, c2

a1

8, a2

c1

417, c2

13, a3 11; b1 614, c3

23, b2

575;

5,

10, a3 14; b1

7, b2

11, b3 1; 7.

9.

580, c3

591;

8, b3 1;

5,

5.

10.

a1 19, a2 c1 1121, c2

16, a3 19; b1

31, b2

706, c3 1066;

13

16,

9, b3 1; 19.

11.

a1

2, a2

3, a3

c1

428, c2

a1

8, a2

c1

840, c2

a1

5, a2

c1

750, c2

a1

5, a2

c1

505, c2

a1

8, a2

c1

864, c2

a1

5, a2

c1

343, c2

a1

7, a2

c1

347, c2

a1

7, a2

c1

363, c2

2; b1

672, c3

3, b2

6, b3

672;

8;

3,

8.

3, b3

2;

12.

6, a3

3; b1

870, c3

2, b2

560;

6,

2.

13.

4, a3

3; b1

630, c3

3, b2

3, b3

700;

4;

5,

6.

3, b3

3;

14.

3, a3

2; b1

393, c3

2, b2

348;

7,

4.

6, b3

9;

15.

7, a3

4; b1

864, c3

3, b2

945;

2,

3.

16.

9, a3 10; b1 587, c3

7, b2

587;

9, b3

11,

8; 7.

17.

7, a3

8; b1

300, c3

5, b2

2, b3 1;

357;

11,

7.

18.

7, a3

8; b1 13, b2

327, c3

429;

8, b3 6,

2; 4.

19.

a1

3, a2

c1

414, c2

9, a3 10; b1 723, c3

5, b2

788;

3, b3 12,

2; 16.

20.

a1

5, a2

c1

256, c2

6, a3

7; b1

283, c3 14

7, b2

363;

6, b3 1; 9,

7.

21.

a1 10, a2

9, a3

5; b1

c1

735, c2

765, c3

a1

8, a2

c1

459, c2

a1

8, a2

c1

612, c2

a1

7, a2

c1

476, c2

a1

8, a2 14, a3

c1

417, c2

6, b2

455;

3, b3 1; 8,

4.

22.

7, a3

7; b1 10, b2

379, c3

459;

5, b3 9,

2; 9.

23.

7, a3

7; b1 12, b2

492, c3

562;

9, b3 11,

5; 9.

24.

6, a3

5; b1

364, c3

8, b2

3, b3 1;

319;

11,

10.

25.

1. 2. 3. 4.

7; b1

580, c3

7, b2

591;

8, b3 1;

5,

5.

. . . , .

5. 6. 7.

. . .

15

2

: 1. . 2.

.

. . . .

-

:

2 x1 3 x2

x3

4,

3 x1 5 x2 2 x3

x1

x1 4 x2

x3

0 , x2

0 , x3

3, 2,

0. -

,

. . ,

x4 .

-

x5 .

-

, ,

: 2 x1 3 x2

x3

x4

3 x1 5 x2 2 x3 x1 4 x2

x3

x5

4, 3, xi

2,

16

0, i 1,...,5.

-

. .

(

). (



,

,

). , ,

-

,

. .

, ,

,

,

.

-

. : m

,

-

.

L

,

. .

:

,

L

; ,

-

L

.

1.

.

2. 3.

. ,

,

. 4. 5.

. .

,

. 6.

: )

: ,

L ,

,

.

s; )

: .

17



-

.

r;

)

:

, .

ars ; )

, .

,

-

;

bij

)

-

:

1 ; a rs

brs

ais , i ars

bis

brj (

arj ars

, j

r;

s;

. 3).

a ij

a is

arj

ars .3

bij

aij ars

arj ais

ars

.

7.

. 2.

1. L 10 x1 12 x 2

4 x1 5 x2 2 x1

max ,

300,

x2 100,

2 x1 3 x2 160, x1

0 , x2 18

0.

1.

-

x3 , x 4 , x5 . x1 , x2 – L 10 x1 12 x 2

,

4 x1 5 x 2 2 x1

x2

x3

0, x2

300,

x4 100,

2 x1 3 x 2 x1

. max ,

x5 160,

0, x3

0, x4

0, x5

0.

2.

x3

300 4 x1 5 x2 ,

x4 100 2 x1

x2 ,

x5 160 2 x1 3 x2 . 3. 4.

X0

0; 0; 300; 100; 160 .

(

. 2). 2

. .

.

x1

x2

x3

4

5

300

x4

2

1

100

x5

2

.

L

160

3

–10

–12

0

5.

, . . .

300 60 5 100 100 1 160 53,3 min 3

L

-

L (–12),

.

-

, .

. ,

, , . . a 32

3, 19

.2

.

6.

. 2,

( ,

5

(

.

. 3), -

, . 6). 3

I . .

.

x1

.

x5

x3

2 3

5 3

100 3

50

x4

4

1 3

140 3

35 min

1 3

160 3

80

4

640

3

2 3

x2

2

L

100 160 140 ; ; 0; ; 0 , 3 3 3

. 3, X 1

, ,

L

. (

,

. 4). 4

. .

.

x4

x5

1 2

3 2

10

3 4

1 4

35

1 2 3 2

1 2 7 2

.

x3



x1 x2



L

. 4, X 2

,

L

,

30 710

35; 30; 10; 0; 0 , .

: 35

30

, 20

-

710

,

)

S2 ( S1 (

, 10

)

S3 ( )

.

1. 2.

? ?

3.

.

4. 5. 6. 7.

,

,

?

. . :

,

,

,

.

8.

?

,

-

1.

1. 2. 3. 4. 5. 6. 7.

. . . . . . .

8.

.

21

3

: 1. 2.

. , .

.

, , . .

,

,

. . . –

,

.

, (

). :

1. 2. 3.

. . –

. . .

, , , .

(

)

. ,

, . , .

-

, , . .

, .

, . ,

-

, .

22

S0

U ,

Sn . . n , …, n-

,

S1 , S 2 , ..., S n –

.

. 4.

.4

u1 , u2 , ..., un ,

U

(u1 ; u2 ; ...; un ) , Sk 1

uk –

k . 5).

Sk (

,

-

.5

S k (k

0,..., n)

, .

uk uk

(u k(1) ; u (2) ;...; u(k p ) ) . k

Wk ( S k 1 ) , Sk 1

k-1

uk

.

*

, Sk –

k

*

,

*

uk .

, .

*

Wk ( S k 1 )

k .

k

-

Sk .

uk , (

),

,

23

-

Wk

W k* 1 S k .

,

1

*

uk .

, ,

,

, , k

.

Wk* S k

max Wk Sk 1 , uk

1

uk Dk

Wk*

1

: Sk , k 1.....n , .

Wk ( S k 1,uk ) – k

«

»

, W k* S k k , k+1

k

1

, W k* 1 S k



. (

. 6)

1

Wk

-

: *

Wk S k

max W k S k

1

uk D

* 1

Sk .

.6

,

Wn* S n

n

max Wn S n 1 , un , Wn

1

Wn* 1 ( S n

un

2

) max Wn un

1

S n 2 , un

1

* 1

S n , un

0,

1

(n-1)Wn* ( S n 1 ) .

1

-

: , ,

.

24

,

, , .

:

n

1.

,

k 1, 2, ..., n .

Sk

2. uk(1) ; uk(2) ; ...; uk( p ) ; ,

uk

k

uk

Dk –

Dk ,

-

.

3. 4. »)

S k 1 , uk .

Sk

k Wk



W S k 1 , uk n

W

Wk

max .

k 1

5.

Wk* S k

max Wk Wk*

1

6.

uk Dk

1

Sk .

k

.

W n* 1

n,

0,

-

Wn* Sn

1

max Wn .

un Dn

u*n S n W n* S n k

7. , n 1, n 2, ..., 1 ,

1

1

,

. .

-

, . . .

,

. 7.

25

.7

8.

. * Wmax

u1* S 0 ,

S0

-

S1*

u1* , S0 , -

W1* S0

k 1

. 8.

.8

U * u1* , u2* , ..., u*n ,

S0 * Wmax .

26

S *n ,

3. . –y

4

S0 = 1 000 , – -

x .

5x

0,3x

, 0,5y

4y

. -

,

4 . .

4

4

Si –

.

i-

ii

, Wi –

,

(

. , i = 1, 2, 3, 4. xi , yi – i. . 5). 5

N

B

1

S0 S1 S2 S3

2 3 4

(

x1 x2 x3 x4

y1 y2 y3 y4

W1 W2 W3 W4

S1 S2 S3 S4

. 6). 6 1-

2-

3-

4-

5x1

0,3x1

x2

5x 2

0,3x2

x3

5x3

0,3x3

x4

5x 4

y1

4 y1

0,5y1

y2

4 y2

0,5y2

y3

4 y3

0,5y3

y4

4 y4

W1 = 5x1 + 4y1

S1 = 0,3x1 + 0,5y1

S1 = x2 + y2

W2 = 5x2 + 4y2

S2 = 0,3x2 + 0,5y2

S2 = x3 + y3

W3 = 5x3 + 4y3

S3 = 0,3x3 + 0,5y3

S3 = x4 + y4

W4 = 5x4 + 4y4

B

x1

S0 = x1 + y1

-

27

4 W4*

maxW4

max 5 S3

x4

y4

S3 ,

x4

S3

y4 , S3

max 5 S3

y4

5 S3

max (5 x 4 4 y4 )

y4

4 y4

0 y4 S3

.

const y4

y4

0

5 S3.

-

W4

. 0; S3 (

5 S3

y4

. 9).

.9

W4

k

5 S3 ,

1 0,

y4 , , 0; S3 , . .

W4*

maxW4

max (5 S3

y 4 ) 5 S3 0 5 S 3 .

0 y4 S 3

3 W3* 4

max W3 W4*

x3

y3

S 2 , x3

max 5 x3 4 y3 5 S3 S2

0,3S2 0,3 y3 0,5 y3

y3 , S3

0,3 x3 0,5 y3

0,3 S2 0, 2 y3 , S 2

max (5 S 2 5 y3 4 y3 1,5 S2

0 y3 S 2

y3 )

const

max 6,5 S 2

0 y3 S2

6,5 S 2 .

3–4

,

, ,

, ,

x3

S2 , y3 2

S2 . 2

28

2 W2* 4

max W2 W3* 4

x2

y2

S1 , x2

max 5 x2 y2 , S 2

S1

0,3 S1 0, 3 y2 0, 5 y2

max (5 S1 5 y2

0 y3 S2

4 y2

6,5S 2

0, 3 x2 0, 5 y2

0,3S1 0, 2 y2 , S1

const

4 y2 1, 95 S1 1,3 y2 )

max 6, 95 S1 0, 3 y2

6, 95 S1 0, 3 y2

0 y2 S1

y2

S1

7, 25 S1.

. 10

1 W1* 4

max W1 W2* 4

x1

y1

S0 , x1

max 5 x1 4 y1 7, 25 S1 y1 , S1

S0

0,3 S0 0,3 y1 0, 5 y1 max (5 S0 5 y1

0,3 x1 0,5 y1

0, 3 S0 0, 2 y1 , S0

const

4 y1 2,175 S0 1, 45 y1 )

0 y1 S0

max 7,175 S0 0, 45 y1

0 y1 S0

7,175 S0 0, 45 y1

y1

S0

7, 625 S0 .

. * 4

u ( x4

S3 ; y 4

: 0) ; ,

,

43-

. .

. 11.

29

,

-

. 11

, . 12.

. 12

(

S0

1000

. 7) , W1* 4

.

7625

, :

30

7

1

S0 1 000

2

S1

0,3 x1* 0,5 y1*

3

S2

0,3 x2* 0,5 y 2*

4

S3

x1*

0

y1* 1 000

500

x*2

0

y*2

500

250

x3*

125

y3*

125

0,3 x3* 0,5 y3* 100

x*4

100

y*4

0

,

-

. 4. 4

A

.

,

x

f x

x

A,

2

x

y

0, 75 x .

S0

,

g y

B, y

B

0,3 y .

100

2 y2 -

. . 4

4

,

. (

, . 8). 8

S1 S2 S3 S4

1 2 3 4

A

B

x1 x2 x3 x4

y1 y2 y3 y4

k

W1 W2 W3 W4

Wk

xk2

2 y k2 . :

0 ,75 x k

Sk

1

0 ,3 yk 1 .

4

: 4

W

4

Wk k 1

k 1

31

x k2

2 yk2 .

W k* S k (

max W k S k

1

uk Dk

W k* 1 S k .

1

. 9). 9

x1

x12

0,75x1

x2

x22

0,75x2

x3

x32

0,75x3

x4

x42

y1

2y12

0,3y1

y2

2y22

0,3y2

y3

2y32

0,3y3

y4

2y42

x2 + y2 = S1

W2 = x22 + 2y22

S2 = 0,75x2 + 0,3y2

x3 + y3 = S2

W3 = x32 + 2y32

S3 = 0,75x3 + 0,3y3

x4 + y4 = S3

W4 = x42 + 2y42

4-

S1 = 0,75x1 + 0,3y1

3-

W1 = x12 + 2y12

B

2-

x1 + y1 = S0

1-

4-

W4* x4

y4

S3 ,

max

0 x4 , y4 S3

W4

max

0 x4 , y4 S3

x42

S3 –

2 y 24 4-

W4

max

0 x 4 , y4 S3

S3

y4

.

2

.

2 y42 .

:

,

,

dW4 dy4 dW4 dy4 dW4 dy4

2 S3 0,

y4

.

0.

4 y4 ,

2 S3 6 y 4

32

0, y4

2 S3 6

S3 . 2

d 2W 4 dy 42

,

6 0,

,

-

0; S3

S32 , W4 S3

W4 0

2 S32 .

,

W4* . .

2S32

y4

S 3 , x4

0,

43

B. .

W3*

max

0 x 3 , y3 S 2

x32

W3 W4* , W3

2 y32

2 S32 .

, S3 W3

S2 S2

S3

y3

y3 2

2

0,32 x3 0,75 y3 , x3 2 y32 2 0, 75 S 2

y3

S2 ,

0,3 y3

y3

2

2

2 y32 2 0, 75 S3 0, 45 y3 ,

const . W3* dW3 dy3

max

S2

0 y3 S 2

y3

2 S2

y3

2

2 y32

2 0, 75 S2 0, 45 y3

2

,

4 y3 4 0, 75 S 2 0, 45 y3 0, 45 ,

d 2W3 dy 2 3

6 4 0, 452

0,

. .

, ,

0; S 2 W3 0

S22 2 0, 752 S 22

W3 S2

2 S 22 0,18 S 22

* , W3

2

2,18 S 22

y3

.

W2*

max

0 x 2 , y 2 S1

33

2,125 S22 , 2,18 S 22 . S2 , x3 B. –

W2 W3* ,

0, . .

3-

-

x 22

W2 , S2 W2

0, 75 x2 0,3 y2 , x 2

S1 S1

2

S1

0 y2 S1

2 S1

S1

S1

const ,

2 y22 2,18 0, 75 S1

y2

0, 3 y2

y2

2 y22

2

2,18 0, 75 S1 0, 45 y2

2

,

4 y2 4,36 0,75 S1 0, 45 y2 0, 45 ,

6 4,36 0, 452

W2 S1

1

2

y2

S12

W2 0

0, x2

y2

2

d 2W2 dy 2 2

y2

2,18 S 22 .

2 y22 2,18 0, 75 S1 0, 45 y2 .

max

dW2 dy2

2

y2

y2

W2*

2 y22

2,18 0, 75 S1

6,8829 0 , 2

2, 22625 S12 ,

2 S12

0,1962 S12

2,1962 S12 ,

W2*

2, 22625 S12 ,

S1 , . . A.

.

– W1*

max W1 W2* ,

0 x1 , y1 S0

x12

W1

2 y12 2, 222625 S12 .

, S1

W1

S0 S0

W1*

0, 75 x1 0,3 y1 , x1

y1 max

0 y1 S0

y1 2

2

y1

S0 ,

2 y12 2, 22625 0,75 S0

S0

const ,

0,3 y1

y1

2

2

2 y12 2, 22625 0, 75 S0 0, 45 y1 , S0

y1

2

2 y12

2, 22625 0, 75 S0 0, 45 y1

34

2

,

dW1 dy1

2 S0

y1

4 y1 2 2, 22625 0, 75 S0 0, 45 y1 0, 45 ,

d 2W1 dy 21

6 2 2, 22625 0, 452

W1 0

S02

W1*

2, 22625 0, 75 S 0

2 S02

W1 S0

0. 2

2, 22625 0, 3 S0

2, 25227 S 02

y1

2, 25227 S 02 , 2

2, 20026 S 02 .

0, x1

S0 ,

. .

. : 4 . 10).

(

22 522,7 10

1

x1 S0 100 x 2 75 x3 0 x4 0

2 3 4

y1 0 y2 0

S1

75

S2

56, 25

y3

56, 25

S3

18

y4

18

5.

P

,

Q. ,

. .

(

. 13 ).

-

, . .

,

, (5

4

), .

. , .

,

35

-

, -

. .

. 13

S5 ,

S5 .

1.

Q

1,

2,

3,

4,

10, 20,

, 29, 48

.

Q 1, 2, 3,

S4 .

2.

S4 ,

4,

5.

-

, .

W B1

W B2

:

9,

min(11 9;15;13 10)

min(20;15; 23) 15 ,

W B3

min(16 15;19 10;12 20)

min(31; 29;32)

W B4

min(13 29;14 20;10 29)

min(42;34;39) 34 ,

36

29 ,

W B5

min(18 34; 21 29;17 48)

S3 .

3.

W C1

min(52;50;65) 50 .

min( 10 9 ) 19 ,

W C2

min(12 19;16 9;14 15)

W C3

min(13 25; 21 15;15 29)

min(38;36; 44) 36 ,

W C4

min(12 36;19 29;11 34)

min(48; 48; 45)

W C5

min(13 45; 25 34;15 50)

25 ,

45 ,

min(58;59; 65) 58 .

S2 .

4.

W D1

min(31; 25; 29)

min( 10 9 ) 19 ,

W D2

min(13 29;17 19;10 25)

min(42;36;35) 35 ,

W D3

min(12 35;18 25;13 36)

min(47; 43; 49)

W D4

min(14 43;18 36;11 45)

min(57;54;56) 54 ,

W D5

min(16 54;16 45;10 58)

min(70; 61; 68)

61 .

min(31; 25; 29)

25 , 55 ,

S1 .

5.

W E1

43 ,

min( 12 29 )

41 ,

W C2

min(12 19;16 9;14 15)

W E3

min(14 47; 20 35;18 43)

min(61;55; 61)

W E4

min(16 55; 24 43;12 54)

min(71; 67; 66)

66 ,

W E5

min(12 66;18 54;18 61)

min(78;72;79)

72 .

57 ,

6.

W M1

S0 . min( 13 41 ) 54 ,

W M2

min(15 54; 20 41;10 47)

min(65;61;57)

W M3

min(13 57;17 47;16 55)

min(70;64; 73)

64 ,

W M4

min(8 64; 25 55;15 66)

min(72;80;81)

72 ,

W P

min(10 72; 20 66;13 72)

37

min(82;86;85) 82 .

, . . 13 .

. 13

,

,

-

P Q, 82 P, M4, M3, E2, D2, C2, B1, Q P, M4, M3, E2, D1, C1, B1, Q.

P1, P2, …, Pn, ,

.

-

. ,

, .

l ij – ,

.

-

.

-

.

38

,

l ij

.

,

l ji . .

,

.

-

,

, .

.

Pn ,

1.

-

,

0, . .

cn

Pn

0. 2.

ci

cn

Pi l in

, Pn .

,

, ,

Pn .

, 3.

,

Pj .

.

cj cj

4.

ci

l ji .

Pj

,

cj

.

-

c*j

cj . cj . cj

*

cj ,

,

Pj

,

,

,

*

cj , . -

. ,

. 5. 6.

3. ,

-

.

, ,

.

39

6.

( .

. 14),

7-

, -

7.

. 14

1.

7(

. 15).

.

0– 6, 5, 4. 7

7 .

, . .

-

.

. 15

2.

4(

. 16).

7. 9 12. . . 7 + 4 = 11>5, 7 + 7 = 14>0.

6, 3, 1, 1 3– ,

. 6, 7 4

. 16 40

.

3. 3

6( 12

. 17). 5 + 2 = 77, 5 + 5 = 10>0.

6

.

. 17

4.

5(

. 18).

1.

3+3=60. 5.

3, 6, 7 3 ( . 19). 2: 7 + 3 = 10, .

3

.

41

: 7 + 5 = 12>7; 7 + 4 = 11>5; . 2, 4, 6. 6, 4 .

. 19

6.

2 (

2

.

. 20). 1 3. , . . 10 + 5 = 15>6, 10 + 3 = 13>7.

. 20

7.

1(

. 21). ,

2, 4, 5. . . 6 + 5 = 11>10, 6 + 2 = 8>4,

6 + 3 = 9>3.

. 21

.

42

. 11.

11 ,

,

1–7 2–7 3–7 4–7 5–7 6–7 7–7

6 10 7 7 3 5 0

1–5–7 2–3–6–7 3–6–7 4–7 5–7 6–7

7. 1

16,

,

. 22 ,

,

. -

,

.

, .

. 22

1. 2.

16

14, 11, 13, 15. .

14. 10 16 .

10, 9, 16. .

-

10, 12, 10, 13. .

16

3.

9, 12, 16.

0.

: 10 + 9 = 19, , . . 10 + 10 = 20>0. 11. 19, 21, 0. 13. 9: 10 + 9 = 1920, 13 + 13 = 26>0. 10. 10, 12, 26, 29.

.

10

.

13

. 4.

9.

11, 13, 8, 5, 6. 12, 10, 23, 29, 25. . 9

8, 9 . 5.

8.

9, 15, 7, 4. 8

19, 13, 32, 35.

-

. 6.

12.

24 + 14 = 38>10. 7.

5, 13. , . . 24 + 10 = 34>29,

12

. 6.

10, 9, 4, 3. 19, 19, 28, 29. , . . 25 + 3 = 28

Smile Life

When life gives you a hundred reasons to cry, show life that you have a thousand reasons to smile

Get in touch

© Copyright 2015 - 2024 AZPDF.TIPS - All rights reserved.